Selected publications

  1. Eddy-Current Sensing Principle in Inertial Sensors
    J. G. Vogel; V. Chaturvedi; S. Nihtianov;
    IEEE Sensors Letters,
    Volume PP, Issue 99, pp. 1-1, 2017. DOI: 10.1109/LSENS.2017.2737940
    Keywords: Eddy-current sensing; high-resolution; inertial sensor; thermal sensitivity.
    Abstract: ...
    The eddy-current displacement sensing principle is, to the best of our knowledge, not yet used in inertial sensors. The main reasons for this are the important performance limitations of the existing eddy-current sensor solutions, such as: low sensitivity, poor stability, high power consumption and bulkiness. Our novel high-frequency Eddy-Current Displacement Sensor (ECDS), however, has significantly improved performance with respect to these limitations and allows the use of planar, stable coils, making it a viable candidate for use in inertial sensors. An implementation example of an ECDS-based inertial sensor with a bandwidth of 370 Hz and a noise floor of 13 um/Hz^0.5 is proposed. Although not yet competitive with state-of-the-art inertial sensors, it performs better than other types of inductive accelerometers and offers the inherent advantages of ECDSs, such as insensitivity to the environment.

  2. Demodulation Techniques for Self-Oscillating Eddy-Current Displacement Sensor Interfaces: A Review
    V. Chaturvedi; M. R. Nabavi; J. G. Vogel; S. Nihtianov;
    IEEE Sensors Journal,
    Volume 17, Issue 9, pp. 2617-2624, May 2017. DOI: 10.1109/JSEN.2017.2677526
    Keywords: displacement measurement; ECDS interface; amplitude demodulation technique.
    Abstract: ...
    This paper presents a comprehensive study of demodulation techniques for high-frequency self-oscillating eddy-current displacement sensor (ECDS) interfaces. Increasing the excitation frequency is essential for lowering the skin depth in many demanding industrial applications, that require better resolution. However, a high excitation frequency poses design challenges in the readout electronics, and particularly in the demodulation functional block. We analyze noise, linearity, and stability design considerations in amplitude demodulators for nanometer and sub-nanometer ECDSs. A number of state-of-the-art amplitude demodulation techniques employed in high-frequency ECDSs are reviewed, and their pros and cons are evaluated.

  3. A Precision Capacitance-to-Digital Converter with 16.7-bit ENOB and 7.5 ppm/°C Thermal Drift
    R. Yang; M. A. P. Pertijs; S. Nihtianov;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 11, pp. 3018-3031, November 2017. DOI: 10.1109/jssc.2017.2734900
    Abstract: ...
    This paper presents a high-precision capacitance-to-digital converter (CDC) for displacement measurement in advanced industrial applications, based on a charge-balancing third-order delta–sigma modulator. To achieve high precision, this CDC employs a precision external resistive reference and a quartz-oscillator-based time reference instead of a reference capacitor. To minimize the error contribution of the CDC circuitry, various precision circuit techniques, such as chopping and auto-zeroing, are applied at both system and circuit level. Measurement results of the prototype realized in 0.35-μm CMOS technology show that the CDC achieves an rms resolution of 42 aF across a capacitance range from 6 to 22 pF, corresponding to an effective number of bits (ENOB) of 16.7 bit. The conversion time for one measurement is 10.5 ms, during which the CDC consumes 230 μA from a 3.3-V single supply. The measured thermal stability is within ±7.5 ppm/°C across a temperature range from 20 °C to 70 °C, which represents a significant improvement compared to the state of the art. After a two-point calibration, all ten measured samples from one batch show absolute accuracy below ±25 fF across the entire capacitance measurement range.

  4. A 9.1 mW Inductive Displacement-to-Digital Converter with 1.85 nm Resolution
    V. Chaturvedi; J.G. Vogel; K.A.A. Makinwa; S. Nihtianov;
    In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
    6 2017.

  5. An Energy-Efficient 3.7nV/√Hz Bridge-Readout IC with a Stable Bridge Offset Compensation Scheme
    H. Jiang; K.A.A. Makinwa; S. Nihtianov;
    In IEEE International Solid-State Circuits Conference (ISSCC),
    February 2017.

  6. A 0.6nm Resolution 19.8mW Eddy-Current Displacement Sensor Interface with 126MHz Excitation
    V. Chaturvedi; M.R. Nabaviand J. Vogel; K.A.A. Makinwa; S. Nihtianov;
    In IEEE International Solid-State Circuits Conference (ISSCC),
    February 2017.

  7. Chopping in Continuous-Time Sigma-Delta Modulators
    H. Jiang; B. Gonen; K.A.A. Makinwa; S. Nihtianov;
    In IEEE International Symposium on Circuits and Systems (ISCAS),
    June 2017.

  8. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers
    V. Mohammadi; S. Nihtianov;
    AIP Advances,
    Volume 6, Issue 2, pp. 025103, 2016.
    document

  9. Chemical Vapor Deposition - Recent Advances and Applications in Optical, Solar Cells and Solid State Devices
    V. Mohammadi; S. Nihtianov;
    S. Neralla (Ed.);
    InTech publisher, Chapter Low-Temperature, , pp. 137-157, 2016. ISBN 978-953-51-2573-0.

  10. Influence of the surface oxide content of a boron capping layer on UV photodetector performance
    V. Mohammadi; R.W.E. van de Kruijs; P.R. Rao; J.M. Sturm; S. Nihtianov;
    In Proc. of the International Conference on Sensing Technology,
    pp. 656-660, March 2016.
    document

  11. Investigation of error- and drift sources in a capacitive sensor system for sub-nanometer displacement measurement
    R.S. Nojdelov; D. Voigt; A.S. van de Nes; S. Nihtianov;
    In Proc. of the IEEE 9th International Conference on Sensing Technology,
    IEEE, pp. -, 2016. Roumen S Nojdelova - EWI.

  12. Suppression Efficiency of the Correlated Noise and Drift of Self-oscillating Pseudo-differential Eddy Current Displacement Sensor
    V. Chaturvedi; J.G. Vogel; S. Nihtianov;
    In Proc. of the 30th EuroSensors conference,
    Sept. 2016.

  13. Tilt sensitivity of an eddy-current position sensor for high-precision applications
    J.G. Vogel; S. Nihtianov;
    In Proc. of the 16th international conference of the EUSPEN,
    2016.

  14. Modelling the inductance of a novel eddy-current position sensor for high-precision applications
    J.G. Vogel; S. Nihtianov;
    In Proc. of the IEEE Sensors Applications Symposium,
    pp. 1 - 5, Apr. 2016.

  15. Study of the Self-resonance Frequency of a Flat Coil for an Eddy-Current Position Sensor
    J.G. Vogel; S. Nihtianov;
    In Proc. of the IEEE Sensors conference,
    Oct. 2016.

  16. Low temperature, 400 °C, pure boron deposition: A solution for integration of high-performance Si photodetectors and CMOS circuits
    V. Mohammadi; S. Nihtianov;
    In S Tadigadapa; J. Lee (Ed.), Proc. of the IEEE Sensors conference,
    IEEE, pp. 1-4, 2015. harvest.

  17. Investigation of long-term drift of NTC temperature sensors with less than 1 mK uncertainty
    A. Kulkarni; M. Patrascu; Y. van de Vijver; J. van Wensveen; R. Pijnenburg; S. Nihtianov;
    In W Suemitsu; C Couto (Ed.), Proc. of the IEEE 24th International Symposium on Industrial Electronics,
    IEEE, pp. 150-155, 2015. Harvest.

  18. Surface oxide content examination of capping boron layers in UV photodetectors
    V. Mohammadi; P. Ramachandra Rao; R.W.E. van de Kruijs; S. Nihtianov;
    In SR Bank; D Jena (Ed.), Proc. of the 73rd Annual Device Research Conference,
    IEEE, pp. 73-74, 2015. harvest.

  19. Stability characterization of high-performance PureB Si-photodiodes under aggressive cleaning treatments in industrial applications
    V. Mohammadi; L. Shi; U. Kroth; C. Laubis; S. Nihtianov;
    In LG Franquelo; BM Wilamowski (Ed.), Proc. of the IEEE International Conference on Industrial Technology,
    IEEE, pp. 3370-3376, 2015. Harvest.

  20. Wireless Temperature Sensor for Harsh Industrial Environments
    A. Kerezov; A. Kulkarni; S. Nihtianov;
    In Y Fujimoto; P Xu (Ed.), Proc. of the IEEE 41st Annual Industrial Electronics Society Conference,
    IEEE, pp. 3986-3991, 2015. Aditya Kulkarni - TNW.

  21. Measuring in the subnanometer range: Capacitive and eddy current nanodisplacement sensors
    S. Nihtianov;
    IEEE Industrial Electronics Magazine,
    Volume 8, Issue 1, pp. 6-15, 2014. Harvest.

  22. Highly-stable electronic sensor interface for capacitive position measurement
    R. Nojdelov; S. Nihtianov;
    Key Engineering Materials,
    Volume 613, pp. 51-57, 2014. Harvest Chapter 2: Position & Displacement Metrology.

  23. Numerical gas flow and heat transfer simulation in the ASM Epsilon 2000 CVD reactor for Pure Boron deposition
    V. Mohammadi; S. Mohammadi; S. Ramesh; S. Nihtianov;
    Annual Journal of Electronics,
    Volume 8, pp. 28-31, 2014.

  24. High efficiency UV photodiodes fabricated on p-type substrate
    P. Ramachandra Rao; S. Milosavljevic; U. Kroth; C. Laubis; S. Nihtianov;
    Annual Journal of Electronics,
    Volume 8, pp. 24-27, 2014.

  25. Dedicated Impedance-Sensor Systems
    G. Meijer; X. Li; B. Iliev; G. Pop; Z. Y. Chang; S. Nihtianov; Z. Tan; A. Heidari; M. Pertijs;
    G. Meijer; K. Makinwa; M. Pertijs (Ed.);
    John Wiley \& Sons, , pp. 68‒100, May 2014.
    Abstract: ...
    Impedance sensors can be defined as being a set of electrodes which can be used to measure electrical properties of materials or structures. Once these properties are known, it appears that the features of measurements performed with such sensors depend for a large part on the properties of the material or structure to be characterized and only partly on the characteristics of the electrodes. The electrical properties of the sensor in its application can be modeled with passive elements in equivalent electrical circuits. The challenging task for the designer is to make such a sensor system sensitive for the measurands and to obtain immunity for other parameters. In this chapter, we consider impedance sensors to be sensors in a certain measurement environment, and that in the electric model presentation of this setup there is at least one resistive or one reactive component of interest which has to be measured.

    document

  26. Capacitive sensor interface with improved dynamic range and stability
    R. Nojdelov; S. Nihtianov;
    In JC Miguez; D Slomovitz (Ed.), Proc. of the IEEE International Instrumentation and Measurement Technology Conference,
    IEEE, pp. 1373-1376, 2014. Harvest.

  27. Error analysis of a charge-balancing capacitive sensor interface with resistive reference
    R. Yang; S. Nihtianov;
    In O Kaynak (Ed.), Proc. of the 23rd IEEE International Symposium on Industrial Electronics,
    IEEE, pp. 274-280, 2014. Harvest.

  28. Capacitance-to-digital converter for accurate displacement measurement in the sub-nanometre range
    R. Nojdelov; S. Nihtianov; A. Yacoot; D. Voigt;
    In P Daponte (Ed.), Proc. of the 20th IMEKO TC4 Symposium on Measurements of Electrical Quantities: Research on Electrical and Electronic Measurement for the Economic Upturn,
    IMEKO, pp. 347-352, 2014. Harvest Together with 18th TC4 International Workshop on ADC and DCA Modeling and Testing, IWADC 2014.

  29. Noise analysis and characterization of a charge-balancing-based capacitive sensor interface with a resistive reference
    R. Yang; S. Nihtianov;
    In JC Miguez; D Slomovitz (Ed.), Proc. of the IEEE International Instrumentation and Measurement Technology Conference,
    IEEE, pp. 1182-1186, 2014. Harvest.

  30. Backside illuminated CMOS image sensors for extreme ultraviolet applications
    P. Ramachandra Rao; C. Laubis; S. Nihtianov;
    In FJ Arregui (Ed.), Proc. of the IEEE Sensors conference,
    IEEE, pp. 1660-1663, 2014.

  31. An eddy-current displacement-to-digital converter based on a ratio-metric delta-sigma ADC
    A. Fekri; M. Nabavi; N. Radeljic-Jakic; Z. Y. Chang; M. Pertijs; S. Nihtianov;
    In Proc. European Solid-State Circuits Conference (ESSCIRC),
    IEEE, pp. 403‒406, September 2014. DOI: 10.1109/esscirc.2014.6942107

  32. Capacitive sensor interface with precision references
    R. Yang; M. A. P. Pertijs; S. Nihtianov; P. Haak;
    In Proc. IEEE International Conference on Industrial Technology (ICIT),
    IEEE, pp. 358‒390, March 2014. DOI: 10.1109/icit.2014.6894896

  33. Stability characterization of high-sensitivity silicon-based EUV photodiodes in a detrimental environment
    L. Shi; S. Nihtianov; L.K. Nanver; F. Scholze;
    IEEE Sensors Journal,
    Volume 13, Issue 5, pp. 1699-1707, 2013. Online publicatie dd 20 december 2012.

  34. An interface for eddy-current displacement sensors with 15-bit resolution and 20 MHz excitation
    M. R. Nabavi; M. A. P. Pertijs; S. Nihtianov;
    IEEE Journal of Solid-State Circuits,
    Volume 48, Issue 11, pp. 2868‒2881, November 2013. DOI: 10.1109/jssc.2013.2281692
    Abstract: ...
    This paper presents an integrated interface for eddy-current sensors (ECSs) for displacement measurement. The employed architecture helps bridging the performance gap between the requirements of demanding and precision industrial applications and the performance of existing ECS interfaces. The interface operates with a sensor excitation frequency of 20 MHz, which is more than one order of magnitude higher than typical values. This high excitation frequency limits the eddy-current penetration depth in the target down to a few tens of micrometers, thus enabling the use of thin targets required in precision applications. The proposed interface consists of a low-power front-end oscillator that incorporates the sensor, and a two-channel offset-compensated synchronous demodulator. A ratio-metric measurement approach along with offset and 1/f noise reduction techniques is applied to improve the system stability. The interface has been realized in a 0.35-μm 3.3 V BiCMOS technology and consumes 18 mW. Measurement results obtained using two flat sensing coils show a full-range non-linearity of the sensor interface of only 0.4\%, and a resolution of 15.5 bits (65 nm on a 3 mm measurement range), with 1 kHz signal bandwidth. This translates into 1.5 pico-Henry inductance-measurement resolution, which is comparable with the performance of the most advanced LCR meters. Using the proposed solution, a long-term instability below 20 ppm (for 17 hours) and a thermal drift of 30 ppm/°C are obtained without any temperature compensation. Compared to the state-of-the-art, the proposed interface achieves a considerably better trade-off between power consumption, resolution, bandwidth, and excitation frequency.

  35. Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications
    M.R. Nabavi; S. Nihtianov;
    S. Nihtianov; A. Luque (Ed.);
    Woodhead Publishing, Chapter Integrated indu, , pp. 76-101, 2013.

  36. Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications
    S. Xia; S. Nihtianov;
    S. Nihtianov; A. Luque (Ed.);
    Woodhead Publishing, Chapter Capacitive sens, , pp. 63-75, 2013.

  37. Noise analysis of a capacitor-to-voltage converter with a zoom-in technique
    A. Heidary; R. Taherkhani; S. Nihtianov;
    In S Mukhopadhyay; {Mason et al}, A (Ed.), Proc. of the 7th International Conference on Sensing Technology,
    IEEE, pp. 252-255, 2013.

  38. A time/resistor-referenced capacitive sensor interface for displacement measurement in the sub-nanometer range
    R. Yang; S. Nihtianov;
    In RC Luo (Ed.), Proc. of the 22nd IEEE International Symposium on Industrial Electronics,
    IEEE, pp. 1-5, 2013. Harvest.

  39. Integrated capacitive-sensor interface based on a multi-slope modulator
    S. Nihtianov; Y. Cheng;
    In GP Hancke; N Beute; Y Ibrahim (Ed.), Proc. of the IEEE International Conference on Industrial Technology,
    IEEE, pp. 966-971, 2013. Harvest.

  40. Reactive sub-nanometer displacement sensors: advantages and limitations
    S. Nihtianov;
    In S Soyjaudah; {Armoogum et al}, V (Ed.), Proc. of the IEEE Africon,
    IEEE, pp. 1-6, 2013.

  41. Surface-charge-collection-enhanced high-sensitivity high-stability silicon photodiodes for DUV and VUV spectral ranges
    L. Shi; S. Nihtianov; L. Haspeslagh; F. Scholze; A. Gottwald; L.K. Nanver;
    IEEE Transactions on Electron Devices,
    Volume 59, Issue 11, pp. 2888-2894, 2012. Harvest.

  42. Power-efficient high-speed and high-resolution capacitive-sensor interface for subnanometer displacement measurements
    S. Xia; S. Nihtianov;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 61, Issue 5, pp. 1315-1322, 2012. Harvest Article number: 6151147.

  43. Design strategies for eddy-current displacement sensor systems: Review and recommendations
    M.R. Nabavi; S. Nihtianov;
    IEEE Sensors Journal,
    Volume 12, Issue 12, pp. 3346-3355, 2012. Harvest.

  44. Comparative study of silicon-based ultraviolet photodetectors
    L. Shi; S. Nihtianov;
    IEEE Sensors Journal,
    Volume 12, Issue 7, pp. 2453-2459, 2012. Harvest Article number: 6175098.

  45. Electrical and optical performance investigation of si-based ultrashallow-junction p+-n VUV/EUV photodiodes
    L. Shi; S. Nihtianov; S. Xia; L.K. Nanver; A. Gottwald; F. Scholze;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 61, Issue 5, pp. 1268-1277, 2012. Harvest Article number: 6163408.

  46. A capacitance-to-digital converter for displacement sensing with 17b resolution and 20μs conversion time
    S. Xia; K.A.A. Makinwa; S. Nihtianov;
    In L Fujino (Ed.), Proc. of the IEEE international solid-state circuits conference digest of technical papers,
    IEEE, pp. 198-199, 2012. Harvest Article number: 6176973.

  47. Autonomous self-aligning and self-calibrating capacitive sensor system
    O.S. van de Ven; D. Yang; S. Xia; J.P. van Schieveen; J.W. Spronck; R.H. Munnig Schmidt; S. Nihtianov;
    In M Kamel; F Karray; H Hagras (Ed.), Proc. of the 3rd International Conference on Autonomous and Intelligent Systems,
    Springer Verlag, pp. 10-17, 2012.

  48. Electrical performance stability characterization of high-sensitivity Si-based EUV photodiodes in a harsh industrial application
    L. Shi; S. Nihtianov; F. Scholze; L.K. Nanver;
    In L Gomes; LG Chakraborty; D Irwin (Ed.), Proc. of the 38th Annual Conference on IEEE Industrial Electronics Society,
    IEEE, pp. 3952-3957, 2012.

  49. Comparison of different methods to cancel offset capacitance in capacitive displacement sensors
    S. Xia; S. Nihtianov;
    In G Brasseur (Ed.), Proc. of the IEEE international instrumentation and measurement technology conference,
    IEEE, pp. 1838-1841, 2012. Harvest Article number: 6229448.

  50. Contact creep in a thermal actuation mechanism
    O.S. van de Ven; J.W. Spronck; S. Nihtianov; R.H. Munnig Schmidt;
    In P. Shore; H. Spaan; T. Burke (Ed.), Proc. of the 12th International Conference of the European Society for Precision Engineering and Nanotechnology,
    EUSPEN, pp. 478-481, 2012.

  51. An energy-efficient capacitive-sensor interface based on a multi-slope modulatior
    Y. Cheng; S. Nihtianov;
    In {Ivanov et al}, R (Ed.), Proc. of the International Scientific Conference Electronics,
    Technical University of Sofia, pp. 65-68, 2012.

  52. Design aspects of advanced eddy current sensor interface for industrial applications
    M.R. Nabavi; S. Nihtianov;
    IEEE Transactions on Industrial Electronics,
    Volume 58, Issue 9, pp. 4414-4423, 2011.

  53. Series resistance optimization of high-sensitivity Si-based VUV photodiodes
    L. Shi; L.K. Nanver; A. Sakic; S. Nihtianov; T. Knezevic; A. Gottwald; U. Kroth;
    In H Zhang; K. Lee; Y Yan; R Dyer (Ed.), Proc. of the IEEE International Instrumentation and Measurement Technology Conference,
    IEEE, pp. 1-4, 2011.

  54. Performance optimization of self-alignment system for capacitive sensors
    J. van Schieveen; R. Yang; S. Nihtianov; J. Spronck;
    In S Bogosyan; K Ohnishi (Ed.), Proc. of the IEEE International Conference on Mechatronics,
    IEEE, pp. 648-653, 2011.

  55. Application challenges of capacitive sensors with floating targets
    S. Nihtianov; G.C.M. Meijer;
    In s.n. (Ed.), Proc. of the IEEE Africon,
    IEEE, pp. 1249-1254, 2011.

  56. Capacitive sensor system for sub-nanometer displacement measurement
    S. Xia; S. Nihtianov;
    In E Lewis; T Kenny (Ed.), Proc. of the IEEE Sensors conference,
    IEEE, pp. 1173-1176, 2011.

  57. A Ratio-metric Analog to Digital Converter for an Eddy Current Displacement Sensor
    A. Fekri; M. R. Nabavi; M. Pertijs; S. Nihtianov;
    In Proc. International Scientific Conference on Electronics,
    Sozopol, Bulgaria, September 2011.

  58. Electrical performance optimization of a silicon-based EUV photodiode with hear-theoretical quantum efficiency
    L. Shi; L.K. Nanver; C. Laubis; F. Scholze; S. Nihtianov;
    In {Esashi et al.}, M; Z Zhou (Ed.), Proc. of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems,
    IEEE, pp. 48-51, 2011.

  59. Zoom-in front-end circuit for high-performance capacitive displacement sensors
    S. Xia; S. Nihtianov;
    In X Yu; T Dillon (Ed.), Proc. of the 37th IEEE Industrial Electronics Society,
    IEEE, pp. 2657-2662, 2011.

  60. High-performance eddy current sensor interface for small displacement measurement
    M.R. Nabavi; R. Yang; S. Nihtianov;
    In {Dyer et al.}, C (Ed.), Proc. of the International Instrumentation and Measurement Technology Conference,
    IEEE, pp. 58-62, 2011.

  61. Series Resistance Optimization of High-Sensitivity Si-based VUV Photodiodes
    L. Shi; L.K. Nanver; A. Sakic; S. Nihtianov; T. Knezevic; A. Gottwald; U. Kroth;
    In H Zhang; K. Lee; Y Yan; R Dyer (Ed.), IEEE International Instrumentation and Measurement Technology Conference,
    IEEE, pp. 1-4, 2011.

  62. Zoom-in front-end for power-efficient high-speed and high-resolution capacitive sensor measurement system
    S. Xia; S. Nihtianov;
    In H Zhang; K. Lee; Y Yan; R Dyer (Ed.), Proc. of the IEEE International Instrumentation and Measurement Technology Conference,
    IEEE, pp. 159-163, 2011.

  63. Highly stable capacitance-to-digital converter with improved dynamic range
    R. Nojdelov; R. Yang; X. Guo; S. Nihtianov;
    In S Mukhopadhyay; A Fuchs; KP Jayasundera (Ed.), Proc. of the IEEE Fifth International Conference on Sensing Technology,
    IEEE, pp. 140-144, 2011.

  64. Qualification of a stable capacitive sensor interface, based on capacitance-resistance comparison
    R. Yang; A. Fekri; R. Nojdelov; S. Nihtianov;
    In E Lewis; T Kenny (Ed.), Proc. of the IEEE Sensors conference,
    IEEE, pp. 1181-1184, 2011.

  65. High-sensitivity high-stability silicon photodiodes for DUV, VUV and EUV spectral ranges
    L. Shi; S. Nihtianov; L.K. Nanver; F. Scholze; A. Gottwald;
    In OH Siegmund (Ed.), Proc. of the SPIE 8145, 81450N,
    SPIE, pp. 1-9, 2011.

  66. Stability characterization of high-sensitivity silicon-based EUV photodiodes in a detrimental industrial environment
    L. Shi; L.K. Nanver; S. Nihtianov;
    In X Yu; T Dillon; Y Ibrahim; E Chang (Ed.), Proc. of the 37th Annual Conference of the IEEE Industrial Electronics Society,
    IEEE, pp. 2651-2656, 2011.

  67. Error source identification and stability test of a precision capacitance measurement system
    S. Nihtianov; X. Guo;
    SAIEE Africa Research Journal,
    Volume 101, Issue 3, pp. 106-111, 2010. NEO.

  68. Pure boron chemical vapor deposited layers; A new material for silicon device processing
    L.K. Nanver; T.L.M. Scholtes; F. Sarubbi; W.B. De Boer; G. Lorito; A. Sakic; S. Milosavljevic; C. Mok Kai Rine; L. Shi; S. Nihtianov; K Buisman;
    In {Lojek et al}, B (Ed.), Proceedings 18th IEEE Conference on Advanced Thermal Processing of Semiconductors - RTP 2010,
    IEEE, pp. 136-139, 2010.

  69. Optical performance of B-layer ultra shallow junction silicon photodiodes in the VUV spectral range
    L. Shi; F. Sarubbi; L.K. Nanver; U. Krothc A; A. Gottwald; S. Nihtianov;
    In B Jakoby; M.J. Vellekoop (Ed.), Proceedings EuroSensors XXIV,
    Elsevier, pp. 633-636, 2010.

  70. Performance improvement of advanced capacitive displacement sensors in industrial applications
    S. Nihtianov;
    In s.n. (Ed.), Proceedings of the 7th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies 2010,
    Coxmoor Publishing Company, pp. 875-884, 2010.

  71. Optical stability investigation of high performance silicon based VUV photodiodes
    L. Shi; L.K. Nanver; A. Sakic; S. Nihtianov; A. Gottwald; U. Krothc A;
    In T Kenny; G Fedder (Ed.), Proceedings IEEE Sensors Conference 2010,
    IEEE, pp. 132-135, 2010.

  72. Optimized low-power thermal stepper system for harsh and inaccessible environments
    R. Yang; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
    In s.n. (Ed.), Proceedings IECON 2010,
    IEEE, pp. 1779-1784, 2010.

  73. Electronic system for control of a thermally actuated alignment device
    R. Yang; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
    In {Rodríguez et al}, J (Ed.), Proceedings ICIT 2010,
    IEEE, pp. 1581-1586, 2010.

  74. Concept evaluation of a high performance self aligning capacitive displacement sensor
    S. Xia; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
    In {Rodríguez et al}, J (Ed.), Proceedings ICIT 2010,
    IEEE, pp. 1575-1580, 2010.

  75. Zoom in techniques in capacitance measurement
    S. Xia; S. Nihtianov;
    In SJ Ovcharov; KK Asparuhova (Ed.), Proceedings Electronics ET2010,
    s.n., pp. 12-15, 2010.

  76. VUV performance characterization of a silicon based ultrashallow junction photodiode
    L. Shi; S. Nihtianov; L.K. Nanver; U. Krothc A;
    In {French et al}, P (Ed.), Proceedings 13th SAFE Workshop of the STW.ICT Conference 2010,
    STW, pp. 158-161, 2010.

  77. Integrated auto alighment and calibration for high resolution capacitive sensor system
    J.P. van Schieveen; J.W. Spronck; S. Nihtianov; R.H. Munnig Schmidt;
    In H Spaan; P Shore (Ed.), Proceedings of the 10th international conference of the european spciety for precision engineering and nanotechnology,
    EUSPEN, pp. 188-191, 2010.

  78. A capacitive sensing technique for measuring displacement with floating target
    X. Guo; S. Nihtianov;
    In {Chakraborty et al}, C (Ed.), Proceedings 2010 IEEE International Conference on Industrial Technology,
    IEEE, pp. 1565-1570, 2010.

  79. An interface for eddy current displacement sensors with 15-bit resolution and 20 MHz excitation
    M. R. Nabavi; M. A. P. Pertijs; S. Nihtianov;
    In Proc. European Solid-State Circuits Conference (ESSCIRC),
    IEEE, pp. 290‒293, September 2010. DOI: 10.1109/esscirc.2010.5619835

  80. A novel i nterface for eddy current displacement sensors
    M.R. Nabavi; S. Nihtianov;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 58, Issue 5, pp. 1623-1632, 2009.

  81. A new approach to high speed high resolution capacitive ratio measurement
    S. Xia; S. Nihtianov;
    s.n. (Ed.);
    Electronics 2008, , pp. 121-124, 2009.

  82. High performance capacitive sensor electronic interfaces for industrial applications
    S. Nihtianov;
    s.n. (Ed.);
    sensor test 2009, , pp. 281-286, 2009.

  83. high performance silicon based extreme ultraviolet radiation detector for industrial application
    L. Shi; F. Sarubbi; S. Nihtianov; L.K. Nanver; T.L.M. Scholtes; F. Scholze;
    s.n. (Ed.);
    IEEE, , pp. 1891-1896, 2009.

  84. Control system for high precision thermal actuation
    yang ruimin; van schieveen jeroen; S. Nihtianov; spronck jo;
    s.n. (Ed.);
    Electronics 2008, , pp. 113-116, 2009.

  85. High resolution low latency capacitive displacement sensor
    S. Xia; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
    s.n. (Ed.);
    Electronics 2008, , pp. 117-120, 2009.

  86. Stability Investigation of High Performance Silicon-Based DUV/EUV Photodiodes
    L. Shi; F. Sarubbi; S. Nihtianov; L.K. Nanver; F. Scholze;
    In P.J. French (Ed.), Proc. of SAFE 2009,
    STW, pp. 530-533, 2009.

  87. Thermal stepper: a high stability postioning system for micro adjustment
    J.P. van Schieveen; J.W. Spronck; S. Nihtianov; R.H. Munnig Schmidt;
    In {Spaan H. Brussel H van}, {Brinkmeijer E.} (Ed.), 9th international conference of the european society for precision engineering and nanatechnology: san sebastian, spain,
    EUSPEN, pp. 110-114, 2009.

  88. MHz-range interface for inductive displacement sensors
    M.R. Nabavi; S. Nihtianov;
    In s.n. (Ed.), Proceedings SENSOR 2009 Conference, Volume I,
    AMA Service, pp. 269-274, 2009.

  89. Low-power front-end of eddy current sensor interfaces for industrial applications
    M.R. Nabavi; S. Nihtianov;
    In s.n. (Ed.), Proceedings of IECON 2009,
    IEEE, pp. 3417-3422, 2009.

  90. Stability considerations in a new interface circuit for inductive position sensors
    M.R. Nabavi; S. Nihtianov;
    In s.n. (Ed.), Proceedings of ICECS 2009,
    IEEE, pp. 932-935, 2009.

  91. Precision measurement of the low-frequency noise of highly-stable capacitance-to-digital converter
    X. Guo; S. Nihtianov;
    In s.n. (Ed.), Proceedings of ISMTII 2009,
    D. S. Rozhdestvensky Optical Society, pp. 167-171, 2009.

  92. MHz-range interface for inductive displacement sensors
    M.R. Nabavi; S. Nihtianov;
    In s.n. (Ed.), Proceedings of sensor+test conference,
    pp. 269-274, 2009.

  93. Radiation detector, method of manufacturing a radiation detector and lithographic apparatus comprising a radiation detector
    S. Nihtianov; L.K. Nanver; F. Sarubbi; T.L.M. Scholtes;
    2009.

  94. RAdiation detector, method of manufacturing a radiation detector and lithographic apparatus comprising a radiation detector
    S. Nihtianov; L.K. Nanver; F. Sarubbi; T.L.M. Scholtes;
    2009.

  95. Characterization of new EUV stable silicon photodiodes
    F. Scholze; C. Laubis; F. Sarubbi; L.K. Nanver; S. Nihtianov;
    conference, 2008. s.n..

  96. An interfacing for eddy current displacement sensors with power considerations
    M.R. Nabavi; S. Nihtianov;
    s.n. (Ed.);
    Sense of Contact 2009, , pp. 1-6, 2008.

  97. A fast interface for low-value capacitive sensors with improved accuracy
    R. Nojdelov; S. Nihtianov;
    In s.n. (Ed.), Proceedings of I2MTC 2008,
    I2MTC2012, pp. 1576-1580, 2008.

  98. Design of reliable interface system for eddy current displacement sensors in vacuum environments
    M.R. Nabavi; S. Nihtianov;
    In J Popp; s.n. (Ed.), ISCAS 2008, IEEE International Symposium,
    IEEE, pp. 2090-2093, 2008.

  99. A low-power interface for eddy current displacement sensors in sub-micron applications
    M.R. Nabavi; S. Nihtianov;
    In s.n. (Ed.), The IMTC IEEE 2008 proceedings,
    I2MTC2012, pp. 17-20, 2008.

  100. Response time of silicon photodiodes for DUV/EUV radiation
    S. Xia; F. Sarubbi; R. Naulaerts; S. Nihtianov; L.K. Nanver;
    In B Rassa (Ed.), The IMTC IEEE 2008 proceedings,
    I2MTC2012, pp. 1956-1959, 2008.

  101. High-performance DUV/EUV photodiodes in a pure boron doping technology
    F. Sarubbi; L.K. Nanver; T.L.M. Scholtes; S. Nihtianov; F. Scholze;
    In s.n. (Ed.), The annual workshop on semiconductor advances for future electronics and sensors,
    STW, pp. 588-591, 2008.

  102. The dependence of shallow-junction DUV/EUV photodiodes response time on illuminated area
    S. Xia; S. Nihtianov;
    In s.n. (Ed.), Proceedings of sense of contact X,
    Sense of Contact 2009, pp. 1-1, 2008.

  103. The high-tech world of lithography
    S. Nihtianov;
    In s.n. (Ed.), Proceedings of Electronics-ET 2008,
    Electronics 2008, pp. 15-24, 2008.

  104. Response time of shallow junction silicon photodiodes
    L. Shi; S. Xia; F. Sarubbi; R. Naulaerts; S. Nihtianov; L.K. Nanver;
    In s.n. (Ed.), Proceedings of Electronics 2008,
    Electronics 2008, pp. 21-26, 2008.

  105. Pure boron-doped photodiodes: a solution for radiation detection in EUV lithography
    F. Sarubbi; L.K. Nanver; T.L.M. Scholtes; S. Nihtianov; F. Scholze;
    In S Hall (Ed.), IEEE 38th european solid-state device research conference,
    IEEE, pp. 278-281, 2008.

  106. Extremely ultra-shallow p+-n boron-deposited silicon diodes applied to DUV photodiodes
    F. Sarubbi; L.K. Nanver; T.L.M. Scholtes; S. Nihtianov;
    In J Appenzeller (Ed.), 66th annual device research conference,
    IEEE, pp. 143-144, 2008.

  107. High-Precision Read-Out Circuit for Thermistor Temperature Sensor
    R. Wu; K.A.A. Makinwa; J.H. Huijsing; S. Nihtianov;
    , pp. -, 2007.

  108. Capacitance to digital converter
    S. Nihtianov; R. Nojdelov; E. Van Doren;
    In s.n. (Ed.), Proceedings of the 2007 IEEE Sensors Applications Symposium,
    IEEE, pp. 1-4, 2007.

  109. Capacitance meter
    S. Nihtianov; R. Nojdelov;
    In s.n. (Ed.), Proceedings of Electronics ET 2007,
    s.n., pp. 123-128, 2007.

  110. A survey of Eddy current displacement sensors: Imperfections and signal conditioning methods
    M.R. Nabavi; S. Nihtianov;
    In s.n. (Ed.), Proceedings of Electronics ET 2007,
    s.n., pp. 116-122, 2007.

  111. A fast charge-meter for interfacing capacitive sensors
    S. Nihtianov; R. Nojdelov; E. Van Doren;
    In s.n. (Ed.), Proceedings of Africon 2007,
    IEEE, pp. 317-322, 2007.

  112. Selection of Capacitive Sensor interface for high-precision application
    S.V. Ulyashyn; S. Nihtianov;
    In s.n. (Ed.), Proceedings Electronics ET2006,
    Electronics ET, pp. 204-209, 2006.

  113. SC interface for capacitive and voltage measurements with extended linear range
    V.P. Iordanov; G.C.M. Meijer; S.N. Nihtianov;
    In s.n. (Ed.), ProRISC 2003 Program for research on integrated systems and circuits,
    Stichting voor de Technische Wetenschappen, pp. 195-201, 2003. CD-ROM.

  114. 34.4: SC interface for capacitive measurements with extended linear range
    V.P. Iordanov; G.C.M. Meijer; S.N. Nihtianov;
    In Proceedings of IEEE sensors: first IEEE international conference on sensors. Vol. II,
    IEEE, pp. 1436-1439, 2002.

  115. SC interface with extended linear range
    V.P. Iordanov; G.C.M. Meijer; S. Nihtianov;
    In s.n. (Ed.), ET 2002 The eleventh international scientific and applied science conference. Book 1,
    Technical University, pp. 107-112, 2002. niet eerder opgevoerd.

  116. An interface circuit for R-C impedance sensors with a relaxation oscillator
    S.N. Nihtianov; G.P. Shterev; B.P. Iliev; G.C.M. Meijer;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 50, Issue 6, pp. 1563-1567, 2001.

  117. Impedance measurements with second-order harmonic oscillator for testing food sterility
    S. Nihtianov; G.P. Shterev; N. Petrov; G.C.M. Meijer;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 50, Issue 4, pp. 976-980, 2001.

  118. Non-destructive sterility and leakage testing of packaged food products by smart impendance measurements: voortgangs rapport 4
    S. Nihtianov; G.C.M. Meijer;
    Technische Universiteit Delft, Faculty ITS, , 2001. DEL 66.4369.

  119. A multi-period interface system for impedance measurements
    B. Iliev; S. Nihtianov; G.P. Shterev; G.C.M. Meijer;
    In SIcon'01:conference proceedings,
    IEEE, pp. 276-280, 2001.

  120. Interface circuit for impedance measurement to test sterility of food products
    S. Nihtianov; G.P. Shterev; N. Petrov; G.C.M. Meijer;
    {C Nemarich} (Ed.);
    IEEE, , pp. 687-691, 2000.

  121. A novel technique to measure two independent components of impedance sensors with a simple relaxation oscillator
    S. Nihtianov; G.P. Shterev; B. Iliev; G.C.M. Meijer;
    {C Nemarich} (Ed.);
    IEEE, , pp. 674-678, 2000.

  122. A new concept for impedance sensor interfacing with first order oscillator
    S. Nihtianov; G.C.M. Meijer;
    In The eight national scientific and applied conference ELECTRONICS '99: proceedings book 1,
    Technical University Sofia, pp. 62-67, 2000.

  123. A new concept for impedance sensor interfacing with first order oscillator
    S. Nihtianov; G.C.M. Meijer;
    In Proceedings, book 1,
    Technical University Sofia, pp. 62-67, 2000.

  124. A system for testing the sterility of food products with impedance measurement
    G.P. Shterev; S. Nihtianov; N. Petrov; G.C.M. Meijer;
    In ET'2000: proceedings book 1,
    s.n., pp. 79-86, 2000.

  125. Interface system for impedance measurement based on a relaxation oscilator
    B. Iliev; S. Nihtianov; G.P. Shterev; G.C.M. Meijer;
    In ET'2000: proceedings book 1,
    s.n., pp. 71-78, 2000.

  126. Non-destructive on-line sterility testing of long-shelf-life aseptically packaged food products by impedance mearurements
    S. Nihtianov; G.C.M. Meijer;
    In 1999 IEEE Autotestcon proceedings,
    IEEE, pp. 243-249, 1999.

BibTeX support